Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

نویسندگان

  • Sera Shin
  • Jungmok Seo
  • Heetak Han
  • Subin Kang
  • Hyunchul Kim
  • Taeyoon Lee
چکیده

Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-inspired hierarchically structured polymer fibers for anisotropic non-wetting surfaces

We demonstrate a rice leaf-like hierarchically textured polymer fiber array for anisotropic non-wetting surfaces. To provide superhydrophobicity in addition to the anisotropic behavior, fiber surfaces are spray coated with organically modified silica nanoparticles. The resulting micro/nano hierarchically structured fiber surfaces demonstrate anisotropic non-wetting properties. We designed vario...

متن کامل

Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials

The substance secreted by mussels, also known as nature's glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. S...

متن کامل

Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: a numerical analysis of peel-zone.

Despite successful fabrication of gecko-inspired fibrillar surfaces with strong adhesion forces, how to achieve an easy-removal property becomes a major concern that may restrict the wide applications of these bio-inspired surfaces. Research on how geckos detach rapidly has inspired the design of novel adhesive surfaces with strong and reversible adhesion capabilities, which relies on further f...

متن کامل

Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal

Non-wetting super-hydrophobic or super-lyophobic surfaces are of great interest in a variety of applications. Natural water repelling surfaces show micro-/nanocombined hierarchical structure which shows extremely low wettability and self-cleaning characteristics. Inspired by such natural wonders, there have been tremendous efforts to create artificial non-wetting super-hydrophobic or super-lyop...

متن کامل

Bio-inspired design of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity.

In this paper, bio-inspired PDMS films with different hierarchical microstructures were designed and tunable adhesive super-hydrophobicity was achieved on these films. The adhesive forces between a water droplet and the PDMS film can be adjusted from extremely low (about 8.3 μN) to very high (about 57 μN), and the tunable effect can be ascribed to different wetting states for the water droplets...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016